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Nonlinear inward particle flux component in trapped electron mode
turbulence
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Trapped electron turbulence is shown to have a significant inward particle flux component
associated with nonlinear deviations of the density-potential cross correlation from the quasilinear
value. The cross correlation is altered because the density advection nonlinearity mixes a linearly
stable eigenmode with the eigenmode of the instability. The full nonlinear flux is evaluated by
solving spectrum balance equations in a complete basis spanning the fluctuation space. An ordered
expansion for small collisionality, perpendicular wave number, and temperature/density-gradient
instability threshold parameter enables an analytic solution for a weakly driven regime. The solution
quantifies the role of zonal modes on transport via their saturation of the turbulence under intensely
anisotropic transfer. The inward transport is neither diffusive nor convective, but is driven by
temperature gradient and enhanced by flat density gradients. It is slightly smaller than the outwardly
directed flux associated with the growing eigenmode, making the flux a small fraction of the
quasilinear value. © 2006 American Institute of Physics. �DOI: 10.1063/1.2212403�
I. INTRODUCTION

It has long been recognized that the centrally peaked
density profiles of toroidal fusion devices frequently require
some form of inward particle motion. Neoclassical theory
provides such motion in the form of the Ware pinch,1 but it is
often too weak to reproduce observed profiles, given known
particle sources. Consequently, anomalous pinch mecha-
nisms are believed to operate in fusion plasmas. Anomalous
pinches are driven by turbulence and, in principle, are much
larger than collision-driven fluxes. The first anomalous pinch
was postulated to arise for collisional free-streaming, nona-
diabatic electrons subject to a thermal �temperature gradient�
force in a fluctuation driven through ion dynamics.2 Subse-
quently this type of mixing mode mechanism was shown to
apply to collisionless or weakly collisional trapped electrons
below a collisionality threshold.3 These so-called thermodif-
fusive pinches can dominate outward diffusive flux compo-
nents to produce a net inward particle flux. A second type of
anomalous pinch labeled turbulent equipartition is associated
with the adiabatic invariance of trapped electron motion and
is effectively driven by magnetic field curvature, or the gra-
dient of the safety factor.4,5 These two types of fluxes emerge
from a comprehensive kinetic treatment of the linear density
response to the electrostatic potential in toroidal geometry.
The density response includes both trapped and passing
particles,6–8 and thereby captures pinches associated with
both.9 The result is a unified quasilinear particle flux incor-
porating the known anomalous pinches driven by tempera-
ture and safety factor gradients.10 The two types of pinches
are also unified in a quasilinear formulation of the entropy
production rate, ensuring consistency with thermodynamic
constraints.11 Recently there has been an active effort to cor-

roborate the theoretical pinches and their conceptual under-
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pinnings by comparisons with numerical models and
experiments.11–14 This body of work, which also has sought
to determine the relative importance of different pinch
mechanisms in various fusion experiments, has generally
found that turbulent equipartition dominates in a number of
present day devices where collisionality is not particularly
low. However, thermodiffusion, which has a pinch at low
collisionality, is expected to play a role in the International
Thermonuclear Experimental Reactor �ITER�.15

Research on pinches has relied heavily on quasilinear
theory. Analytical calculations use the quasilinear approxi-
mation almost exclusively, but it has also been the frame-
work by which experiments and numerical models are
interpreted.16 The quasilinear approximation uses a linear
density response in calculating the particle flux, thereby
missing the contribution of nonlinearity to the cross correla-
tion between the density and the potential. Transport cross
correlations have been found to be strongly nonlinear in tur-
bulence models for trapped electron mode turbulence,17 ion
drift wave turbulence,18 and Rayleigh–Taylor turbulence.19

To be more concrete, the particle flux is given by

� = −
c

B0
�

k

ky Im�nk�−k� . �1�

The flux itself is nonlinear, of course, because it depends on
a quadratic correlation. However, the simplest and most
widely exploited method for evaluating the correlation is to
use a linear eigenvector to express nk as a linear response to
the potential, nk=R1�k��k. Substitution of this expression
into Eq. �1� yields the quasilinear flux. For simple drift
waves the eigenvector of the unstable eigenmode produces
outward transport.20 The eigenvector of stable eigenmodes

yields inward transport. Stable eigenmodes are generally as-

© 2006 American Institute of Physics9-1

IP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2212403
http://dx.doi.org/10.1063/1.2212403
http://dx.doi.org/10.1063/1.2212403


062309-2 P. W. Terry and R. Gatto Phys. Plasmas 13, 062309 �2006�
sumed to make no contribution to transport after initial de-
cay, because their amplitude �k is presumed to become zero
under the linear damping. The quasilinear flux thus repre-
sents the steady-state particle transport driven by the
turbulence-causing instability. Note that the response R1�k�
follows from inverting a linearized equation for electron den-
sity evolution. The response is a function solely of k because
the frequency is equated to an eigenfrequency, �=�k+�k.
This step makes the response a linear eigenvector, specifi-
cally the eigenvector of the linear instability, assuming � is
the eigenfrequency of the linear instability. In calculating the
particle flux, the effect of a saturated instability can be cap-
tured if the fluctuation level ��k�2 is taken to be that of the
saturated steady state. However, the assumption that the
cross correlation continues to be governed by a linear re-
sponse R1�k�, even in saturation, is severe.

The effect of nonlinearity on the transport cross correla-
tion is a difficult problem that has received only limited
attention.21 Analytically, the problem amounts to the inver-
sion of a nonlinear operator whose form depends on the so-
lution of a nonlinear eigenmode problem. Even if the evolu-
tion equation for the density-potential correlation is
formulated in a closure,22 its solution requires a temporal
inversion that remains highly nontrivial because of the way
characteristic temporal responses are mixed nonlinearly. As a
result, there has been no general procedure capable of evalu-
ating the particle flux outside the quasilinear approximation.
The nonlinear cross correlation is treated in numerical solu-
tions of nonlinear models with particle transport physics, but,
excepting particular cases,7 is generally not investigated in
relation to the quasilinear approximation. Therefore, there
are fundamental unanswered questions about particle trans-
port. For example, when does the quasilinear approximation
break down? What form does the particle flux take when this
approximation breaks down? What underlying nonlinear ef-
fects are at work and how do they operate? How can they be
represented and described? What are their effects on the
anomalous pinch?

Recent work offers a new approach for determining non-
linear phase correlations and nonlinear eigenmodes.17 This
approach provides a systematic treatment of frequencies in
strong turbulence where linear frequencies are mixed in an
amplitude-dependent fashion. It removes the uncertainties
and ad hoc assumptions in prior work.21 The approach ex-
pands the density, and any other fluctuation present in the
model, in a complete basis set of linear eigenmodes. The
density is expanded according to

nk�t� = R1�k��1�k,t� + R2�k��2�k,t� + ¯ , �2�

where � j�k , t� are nonlinearly evolving amplitudes of a com-
plete basis set of linear eigenmodes and Rj�k� are eigenvector
components in the original function space of the density and
the other fluctuations of the model. If the fluctuations in the
turbulent state project onto one and only one eigenmode, that
of the instability, the quasilinear flux is recovered. Con-
versely, because the basis set is complete, any deviation from
the quasilinear flux necessarily implies the excitation of
other members of the basis set. The other members corre-

spond to different instabilities with weaker drive, and dis-
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tinct, neutrally stable and damped eigenmodes of the plasma
dielectric. Equation �2�, and comparable expansions for the
other fluctuations, are referred to as the eigenmode decom-
position.

This approach has been implemented in a fluid model for
trapped electron mode �TEM� turbulence.17 In that system
the unstable TEM eigenmode is mixed with a second eigen-
mode that is stable for all wave numbers. In the weakly
collisional regime the latter is excited to a stationary, finite-
amplitude level by the nonlinearity of electron density ad-
vection. The resulting nonlinear eigenmode is an amplitude-
dependent combination of the unstable eigenmode, which
contributes an outward component to the particle flux, and
the stable eigenmode, which contributes an inward compo-
nent. This model is restricted solely to the dynamics of TEM.
Unlike the comprehensive quasilinear thermodiffusive
pinches that incorporate the physics of ion temperature gra-
dient �ITG� turbulence and nonadiabatic electrons, there is
no ion temperature gradient drive. Moreover, the electron
free energy source in TEM involves both electron density
and temperature, i.e., both are destabilizing. Consequently,
thermodynamics constrains the net flux to be positive. This
means that inward flux contributions arising from the nonlin-
ear excitation of the damped eigenmode are smaller than the
outward quasilinear flux associated with the unstable eigen-
mode. However, inward and outward contributions are simi-
lar in magnitude, so there is a significant reduction of the net
outward flux. Moreover, the inward and outward components
have different scalings with density and temperature gradi-
ents, as shown in this paper. We choose the TEM model
because its simplicity relative to mixing-mode models allows
a complete analytical solution of the nonlinear flux and
thereby provides specific answers to the questions posed
above. Because the premise of the mixing mode is that the
electron dynamics act weakly on the ion dynamics,2,3 it is
possible that the nonlinear physics described herein makes
the net inward flux of the quasilinear thermodiffusive pinch
even more strongly inward in regimes of ITG instability.
However, that is something that must be shown from the
details of the saturated state.

We compute here the particle flux associated with the
TEM fluid model in the weakly collisional regime. The con-
tributions of the unstable and stable eigenmodes are calcu-
lated using the eigenmode decomposition. Expansion of
�nk�k

*� in the eigenmode decomposition yields a flux that
depends on auto correlations ��1�k��2, ��2�k��2, and cross cor-
relations Re��1

*�k��2�k�� and Im��1
*�k��2�k��. Consequently

the stationary values of these quantities in saturation must
be evaluated. Saturation is dual in nature. Energy moves
from the unstable to the stable manifold. �The manifolds are
kx-ky planes for each eigenmode.� Energy also moves from
wave numbers with ky �0 to zonal wave numbers with
ky =0.23 The zonal modes dominate the spectrum, but are
excluded from the flux expression because ky =0 makes the
zonal component vanish. Nevertheless the anisotropic spec-
tral energy transfer that populates the zonal modes is so im-
portant to saturation that it strongly affects the levels of the
eigenmode auto and cross correlations.23 This problem thus

provides an illustration of the crucial distinction between
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zonal modes, which do not contribute directly to the particle
flux, but strongly influence saturation levels, and damped
eigenmodes, which not only contribute to the flux, but are
responsible for the inward component and the deviation from
quasilinear values.

To determine whether the flux is diffusive, convective,
or of some other form, we must know its dependence on the
gradients of density and temperature. This requires us to find
the gradient scalings of saturated amplitudes. Previous work
determined only the scaling of saturated amplitudes on the
ratio of collision frequency to diamagnetic frequency. This
ratio is a function of density gradient, but there is also den-
sity and temperature gradient dependence in �e, the density
to temperature gradient scale length ratio. In this paper we
tackle the difficult and previously untreated problem of re-
solving the �e dependence in the saturated amplitudes.

The remainder of this paper is organized as follows. In
Sec. II the basic model is introduced along with the eigen-
mode decomposition in the context of the particle flux. Sec-
tion III describes the calculation of saturation levels to deter-
mine the scaling of the flux on driving gradients near the
instability threshold. Discussion and conclusions are offered
in Sec. IV.

II. FLUX EIGENMODE DECOMPOSITION

The fluid model for TEM turbulence is given by

�nk

�t
+ �nk + �ikyvD�̂ − ���k

= bn�k� 	 − �
k�

�k� 	 z · k��k�nk−k�, �3�

��k

�t
−


1/2�

1 + k2 − 
1/2nk +
�ikyvD�1 − �̂
1/2� + �
1/2�

1 + k2 − 
1/2 �k

= b��k� 	 − �
k�

�k� 	 z · k��k − k��2

1 + k2 − 
1/2 �k��k−k�, �4�

where nk=
1/2ne+�k is an effective density, ne is the density
of trapped electrons, �k is the potential, 
1/2 is the trapping
fraction, � is the detrapping rate, vD is the diamagnetic drift
velocity, �̂=1+3�e /2, and �e is the ratio of gradient scale
lengths for the density and temperature. A derivation of this
model and the dimensionless normalizations for n, �, t, x,
and y are given in Ref. 17. The nonlinearities are advection
of turbulent electron density, abbreviated as bn�k�, and ad-
vection of vorticity, abbreviated as b��k�. Density advection
has two spatial derivatives, vorticity advection has four. Con-
sequently electron density advection is the dominant nonlin-
earity at large scales where �k�
n /��rms. We will concen-
trate on the long wavelength regime and consider only bn�k�
in the subsequent analysis. Deviations from the quasilinear
flux are most pronounced in this regime. Moreover, the par-
ticle flux is dominated by fluctuations with long wave-
lengths.

The eigenmode decomposition expresses the density and
potential as combinations of the two linear eigenmodes, but

with amplitudes �1�k , t� and �2�k , t� that evolve nonlinearly
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�nk�t�
�k�t�

� = �1�k,t��R1

1
� + �2�k,t��R2

1
�

= �R1 R2

1 1
���1�k,t�

�2�k,t�
� 	 M��1�k,t�

�2�k,t�
� , �5�

where �R1 ,1� and �R2 ,1� are the eigenvectors and Rj�k� are
the ratio nk /�k for each eigenfrequency � j. The eigenvector
components Rj�k� are obtained by linearizing Eq. �4�, replac-
ing � /�t with −i� j, and solving for nk. The result is

Rj�k� = −
1 + k2 − 
1/2

�
1/2 i� j −
ikyvD�1 − �̂
1/2� + �
1/2

1 + k2 − 
1/2 � ,

�6�

where the eigenfrequencies � j are the roots of the character-
istic equation,

�2�1 + k2 − 
1/2� + ��− vDky�1 − �̂
1/2� + i��1 + k2��

− ikyvD� = 0. �7�

Expressions for these frequencies are given in Ref. 17. The
eigenvector components are specified only up to an overall
amplitude. This permits us to take the second component of
each eigenvector as unity. The overall amplitudes �1�k , t�
and �2�k , t� are then governed by the nonlinear evolution
through Eqs. �3� and �4�.

The flux, Eq. �1�, is expressed in the eigenmode decom-
position as

� = − �
k

ky�Im R1��1�2 + Im R2��2�2

+ Im�R1 + R2�Re��1
*�2� + Re�R2 − R1�Im��1

*�2�� ,

�8�

where � has been normalized to the product of sound speed
and mean density, and all quantities are understood to be
functions of wave number k. From Eq. �6� for Rj and the
roots of the characteristic equation, the flux is

� = �
k

ky� ��̂�1 + k2� − 1��1 + k2 − 
1/2�
�1 − �̂
1/2�3 � �

kyvD
���1�2

−
�1 − �̂
1/2�


1/2 � kyvD

�
���2�2

−
�1 − �̂
1/2�


1/2 � kyvD

�
�Re��1

*�2�

−
�2
1/2 − �1 + k2��1 + �̂
1/2��

�1 − �̂
1/2�
1/2 Im��1
*�2�� . �9�

The first term of Eq. �9� is the quasilinear flux, while the
remaining three terms are the nonlinear components of the
flux, and lie wholly outside quasilinear theory. �In quasilinear
theory the amplitude of the unstable eigenmode ��1�2 is iden-
tical to the fluctuation level ��k�2, and �2=0.� As expected
for an unstable eigenmode of a simple TEM model, the qua-
silinear flux is outward. The second term is a contribution
coming entirely from the stable eigenmode, and, as expected,

it is inward. One of the difficult aspects of Eq. �9� is that
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while the first two terms have definite signs rooted in simple
physics, the signs of the third and fourth terms are not easily
determined or tied in any simple way to transparent physical
considerations. The third and fourth terms are cross correla-
tions between the two eigenmodes.

As long as one is dealing with quasilinear theory, the
sign of the flux is found from linear analysis; the fluctuation
level can be supplied, if not from an analytic calculation,
then from a simple estimate like a mixing length or from a
level measured in experiment. For the nonlinear flux, how-
ever, it is necessary to know how the fluctuation level parti-
tions into stable and unstable eigenmode components. More-
over, it is insufficient to know the squared amplitude of each
eigenmode. The complex cross correlation must also be
known. Mixing length estimates are of no use in this situa-
tion; ��1�2, ��2�2, Re��1

*�2�, and Im��1
*�2� must be solved

from a saturation balance that properly accounts for excita-
tion of the damped eigenmode and the nonlinear spectral
energy distribution between all of these quantities. Without
recourse to mixing length arguments, it is also impossible to
determine how each term of the flux scales with driving gra-
dients. This scaling indicates whether components are diffu-
sive, convective, or of some other form. There is, of course,
the partial scaling associated with the coefficients of the tur-
bulent coupling. However, the levels also have scaling with
the driving gradients, which likewise must be obtained from
solution of the saturation balances. This task will be de-
scribed in the next section.

The sign of Eq. �9� appears to be subject to a competi-
tion between terms, some of which have signs that are not
readily evident. The flux, however, is nonnegative in the
steady state. This follows from an exact constraint derived
from the fluctuation energy,

W = �
k

E�k� = �
k

��1 + k2 − 
1/2���k�2 + 
1/2�nk�2� . �10�

If we take the time derivative of Eq. �10�, and use Eqs. �3�
and �4� to replace �nk /�t and ��k /�t by the remaining terms
governing evolution, the time derivative of the energy can be
written

dW

dt
= 2�

k

�− kyvD�̂
1/2 Im�nk�k
*� − �
1/2��nk − �k��2� .

�11�

This fairly simple form includes only the dissipative terms of
the evolution equations, Eqs. �3� and �4�, because the non-
linear transfer terms exactly cancel in the sum over k. The
cancellation is an expression of energy conservation. The
first term on the right hand side of Eq. �11� is proportional to
the flux, hence Eq. �11� can be reexpressed as

� =
1

2vD�̂
1/2

dW

dt
+

�

vD�̂
�

k

�nk − �k�2. �12�

This is the fluctuation-dissipation theorem for the TEM
system �Eqs. �3� and �4��. Its importance here is that if there
is a steady state with dW /dt=0, ��0, i.e., the flux is con-
strained to be nonnegative. This constraint is related, at least

informally, to the second law of thermodynamics, with the
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conclusion that the flux cannot push particles up the density
gradient unless energy is being depleted from the fluctuation
spectrum �dW /dt0�. Since the quasilinear part of the flux
is positive when the eigenmode is unstable, the nonlinear
components, if negative, must be smaller than the quasilinear
component. It should be cautioned, however, that saturated
states can be very nonstationary,18,24 with persistent long-
time-scale oscillations during which dW /dt and � are nega-
tive. Moreover, the constraint applies to the simple TEM
model of this paper and not to mixing-mode dynamics where
ion free energy can drive inward particle transport in steady
state,2,3 or to the comprehensive models like those of Refs.
6–8. Equation �12� is an exact integral constraint. It applies
as a sum over k space, but not pointwise in k space. If, as is
commonly done, the flux is approximated from pointwise
energy balances in the spectrum subrange of the instability
�mixing length is an example�, the approximation may not
satisfy Eq. �12�.

III. THRESHOLD SCALING OF SATURATED STATE

We now take up the matter of evaluating the flux, Eq.
�9�, from an analytic solution giving the quantities ��1�2,
��2�2, Re��1

*�2�, and Im��1
*�2�. These quantities are ulti-

mately governed by the evolution equations for the eigen-
mode amplitudes. Recasting Eqs. �3� and �4� in the eigen-
mode decomposition yields the desired evolution equations,

��̇1�k�

�̇2�k�
� + �i�1 0

0 i�2
���1�k�

�2�k�
� =

1

R1�k� − R2�k�
� bn

− bn
� ,

�13�

where bn is understood to be evaluated using the substitution
nk=R1�1+R2�2 and �k=�1+�2. It is possible to simplify
Eq. �13� somewhat, because numerical solutions show that
�2��1, allowing �k to be approximated by �1 in the non-
linearity. With this approximation, which conserves energy,
the evolution equations can be written

 �

�t
+ i� j�� j = − �

k�
�
m=1

2

�− 1� jCm�k,k���m� �1�, �14�

where the notation � j�	� j�k� , t�, � j�	� j�k−k� , t�, � j

	� j�k , t� is adopted for shorthand �and also will be applied
to the eigenmode frequencies � j�k��. The factors Cm�k ,k��
=−�k�	 ẑ ·k�Rm�k�� / �R1�k�−R2�k�� are the nonsymmetrized
nonlinear coupling coefficients of the eigenmode decompo-
sition. It is straightforward to construct evolution equations
for ��1�2, ��2�2, Re��1

*�2�, and Im��1
*�2� by taking appropri-

ate moments of Eq. �14�. The result is

 �

�t
+ i� j − i�l

*��� j�l
*� = − �

k�
�
m=1

2

�Tmjl�k,k��

+ Tmlj
* �k,k��� , �15�

where Tmjl�k ,k��= �−1� jCm�k ,k����m� �1��l
*� is a triplet corre-

lation of the eigenmode amplitudes. The indices �j , l� take
the values �1,1�, �2,2�, �1,2�, and �2,1� to recover equations

for the four correlations.
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The moment hierarchy generated by Eqs. �14� and �15�,
in which moments at a given order are specified by moments
of the next order, can be closed using statistical closure
theory. Closures based on quasinormal statistics allow
Tmjl�k ,k�� to be written as products of second-order mo-
ments, closing the hierarchy. The eddy damped quasinormal
Markovian closure has been applied to this system,17 yield-
ing

Tmjl�k,k�� =
�− 1� j+1Cm�k,k��

iWm1l
�
p=1

2

��− 1�m�Cp�k�,k���p�l
*�

	��1��
2 + Cp�k�,k� − k���p�

*�1����1�l
*��

− Cp�k − k�,− k����p�
*�m� ���1�l

*� − Cp�k

− k�,k���p�l
*���1�

*�m� � + �− 1�l�Cp
*�k,k��

	��p�
*�m� ���1��

2 + Cp
*�k,k − k����p�

*�1��

	��1�
*�m� ��� , �16�

where iWm1l= i�m� + i�1�− i�l
*−��m� −��1�−��l

* is the turbu-
lent response function, and ��m is the turbulent �amplitude-
dependent� frequency of the eigenmode m. Expressions for
��1 and ��2 are given in Ref. 17. In computing the flux we
will assume that Wm1l is dominated by the linear frequencies,
consistent with a wave-dominated regime. Wave physics be-
comes important at long wavelengths because the wave
propagation terms carry a lower power of wave number than
the nonlinearity. For density evolution the comparison of
wave term with nonlinearity yields

kyvD�̂ � k2nk, �17�

as the criterion for the wave-dominated regime. The magni-
tude of the nonlinearity is tied to the linear drive, hence the
wave regime tends to be synonymous with weak collisional-
ity �vDky. However, the growth rate is also sensitive to
proximity to threshold. Near the instability threshold the
wave regime is even more strongly enforced. Because the
spectra peak at long wavelength the particle flux is domi-
nated by long wavelength modes satisfying Eq. �17�. The
wave regime is assumed even though the frequency mis-
match Re��m� +�1�−�l

*� becomes small �of order k2� when
m= l=1. Regimes in which ��m� +��1�+��l

*� i�m� + i�1�
− i�l

* are of interest and are considered elsewhere.
Equations �15� and �16� compactly specify the evolution

of the spectral densities ��1�2, ��2�2, Re��1
*�2�, and Im��1

*�2�
under spectral energy transfer, accounting for the nonlinear
mixing of eigenmodes and eigenfrequencies. Wave number
convolutions make these equations poorly suited for analytic
solution of spectra. However, they can be solved for the de-
pendencies on the physical parameters �, vD, �e, and 
, ef-
fectively averaging over some range of wave numbers. This
remains a difficult problem because the equations are nonlin-
ear, with 48 nonlinear terms for each quantity. While some of
these terms are not independent, reducing the number some-
what, it is sufficiently large to make solving Eqs. �15� and
�16� in any form nontrivial. To break down the task, these
equations were first analyzed for the scaling of the solution

with a single normalized parameter � /vDky, using asymptotic
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methods based on the smallness of � /vDky.
17 The task was

further simplified by assuming isotropic spectral transfer.
Subsequently the high degree of anisotropy in the spectral
transfer25 was taken into account. The anisotropy is so pro-
nounced that the instability saturates by transfer to the nar-
row layer of zonal modes with ky =0.23 The anisotropy of the
saturation channel means that the problem of wave-number
variations cannot be completely separated from the problem
of parameter dependencies. Recently, it was shown that this
difficulty is amenable to a coarse graining approximation in
which the spectrum is split into components for zonal and
nonzonal subranges.23 This led to an asymptotic solution of
the leading order scaling in the parameter � /vDky. The scal-
ing was calculated for eight correlations taken from wave-
number averages of ��1�2, ��2�2, Re��1

*�2�, and Im��1
*�2� for

ky =0 and ky �0. These were obtained from the eight inde-
pendent equations extracted from Eq. �15� by taking ky =0 or
ky �0, and accounting for the anisotropies in C1, C2, and
Wm1l when ky =0, ky�=0, or ky −ky�=0.

To construct a meaningful particle flux this process must
be taken one step further by resolving the dependence on the
driving gradients. The dependence on driving gradients is
contained in the parameters vD and �e. The eight nonlinear
equations for the eigenmode correlations are too complicated
to enable a general solution of the dependence on �e. Instead
we expand the equations in the small parameter �= �̂−1
= 3

2�e. Taking � small reduces the number of nonlinear terms
in the eight equations, and simplifies the solution. Near-
threshold values of �e are consistent with the idea that strong
transport above the threshold reduces the temperature gradi-
ent and thereby keeps it near threshold. Since there are three
small parameters, �=� /vDky, k2, and �, we must adopt an
ordering scheme for consistency. The ordering we assume is

� � 
� � 
k . �18�

In the TEM model, Eqs. �3� and �4�, the collisionless trapped
electron mode is unstable for �� �1+k2�−1−1�−k2. Hence,
for this ordering the system is above threshold with �e�0,
but not significantly so, because �e does not exceed unity.
This ordering is by no means the only possibility for ��1
within a long wavelength, weakly collisional regime. Smaller
and larger � values are of interest. For ��1 we have not
been able to find analytic solutions; for smaller � the system
is closer to threshold, with smaller transport and fluctuation
levels. Increasing k to k�
� was found to have no signifi-
cant change on saturation scalings.

The solution of the problem consists in finding the
lowest-order asymptotic dependence of the eight spectra on
the parameter �. This is done by examining asymptotic bal-
ances and eliminating those that are not consistent, with the
criteria for consistency given below. Starting from the prior
expansion in �=� /kyvD, the spectra have the form

���1�k��2�ky�0 = ky
2vD

2 S11T��1, �19�

���2�k��2�ky�0 = �2S22T��2, �20�

�Re��1
*�k��2�k���k �0 = �2 Re S12T��3, �21�
y
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�Im��1
*�k��2�k���ky�0 = �kyvD Im S12T��4, �22�

���1�k��2�ky=0 = k̄y
2vD

2 S11Z��5, �23�

���2�k��2�ky=0 = k̄y
2vD

2 S22Z��6, �24�

�Re��1
*�k��2�k���ky=0 = k̄y

2vD
2 Re S12Z��7, �25�

�Im��1
*�k��2�k���ky=0 = �k̄yvD Im S12Z��8, �26�

where �1, �2 , . . . ,�8 are the as yet unknown scaling expo-
nents of � to be determined by the consistency of asymptotic
balances.

These spectra are the solutions of eight independent
equations constructed from Eq. �15�. Evolution equations
for ���1�2�ky�0 and ���1�2�ky=0 are obtained by taking
�j , l�= �1,1� with ky =0 and ky �0. The condition ky �0 re-
quires special attention for anisotropic transfer involving
modes with ky�=0. Modes with ky −ky�=0 replicate terms al-
ready generated by ky�=0 and need not be treated separately
to uncover the scaling exponents � j. Evolution equations
for ���2�2�ky�0 and ���2�2�ky=0 are obtained by taking
�j , l�= �2,2�, again with ky =0 and ky �0. Evolution equa-
tions for �Re��1

*�2��ky�0 and �Re��1
*�2��ky=0 are obtained

by adding together the equations for �j , l�= �1,2� and
�j , l�= �2,1�, evaluated at ky =0 and ky �0. The equations
for �Im��1

*�2��ky�0 and �Im��1
*�2��ky=0 are obtained from the

difference of the equations for �j , l�= �1,2� and �j , l�= �2,1�,
again evaluated at ky =0 and ky �0. To generate these equa-
tions C1, C2, and Wml1 are expanded asymptotically for
��
��
k�1. The coefficients C1 and C2 appear with
wave-number dependencies C1�k ,k��, C1�k� ,k�, C1�k� ,k�,
C2�k ,k��, C2�k ,k��, C2�k� ,k�, C2�k� ,k�, C2�k� ,−k��, and
C2�k� ,−k��, and must be evaluated separately for the three
conditions ky =0, ky��0; ky �0, ky�=0; and ky �0, ky��0.
Likewise W111, W112, W211, and W212 must be expanded as-
ymptotically in � and � for ky =0, ky��0; ky �0, ky�=0; and
ky �0, ky��0.

The evolution equations for Re��1
*�2� can be solved

exactly, even before taking the asymptotic expansion, by
exploiting symmetries of Tmjl�k ,k��. In particular,
Tm12=−Tm22 and Tm21=−Tm11, which creates a simple rela-
tionship between the evolution equations for ��1�2 and
Re��1

*�2�. In steady state this relationship leads to the iden-
tity

− Re��1
* − �2�Im��1

*�2� − Im��1
* − �2�Re��1

*�2�

+ Im �2��2�2 + Im �1��1�2 = 0. �27�

Imposing the asymptotic ordering and taking ky =0, this iden-

tity reduces to
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Re S12Z = − S22Z,

�28�

�7 = �6,

while for ky �0 it reduces to

Im S12T =

1/2

�1 − 
1/2�̂�2S11T,

�29�

�4 = 1 + �1.

The remaining six exponents were evaluated by testing
asymptotic balances for all possible combinations of � j rang-
ing from 0 to 2. There are six independent exponents with
three possible values, hence there are 36=729 possible �
scalings to test. Consistent asymptotic balances are defined
as those satisfying the following physical constraints:

1. In the equation for ���1�2�ky�0, the linear term must
enter the lowest-order balance, along with at least one non-
linear term. This constraint ensures that the turbulence is
driven by the TEM instability, and that there is a saturated
steady state in which the instability drive is balanced by
turbulent energy transfer.

2. In the equation for ���2�2�ky=0, the linear term must
enter the lowest-order balance, along with at least one non-
linear term. Otherwise, S22Z decays if the linear term is the
only lowest-order term, or, the system saturates at an unreal-
istically high level. Previous work has shown that the domi-
nant saturation channel is energy transfer to zonal modes on
the damped eigenmode branch.23 Other channels, e.g., en-
ergy transfer to viscously damped high k modes on the un-
stable eigenmode branch, are much less efficient. They are
important only if the transfer to zonal modes is artificially
suppressed, leading to much higher fluctuation levels.

3. In the equation for ���2�2�ky�0, the linear term must not
be the only term in the lowest-order balance. Otherwise, S22T

decays. The linear term can be of higher order than nonlinear
terms, provided there are at least two independent nonlinear
terms of opposite sign.

4. In the equation for �Im��1
*�2��ky=0, the linear term

must not be the sole lowest-order term. Otherwise, Im S12Z

decays.
5. In the equation for �Im��1

*�2��ky�0, the linear term
must not be the sole lowest-order term. Otherwise, Im S12T

decays.
The sixth condition, applying to the equation for

���1�2�ky=0, is discussed below. In these conditions the leading
order nonlinear terms must not be linearly dependent and
cancel one another when ky =0 or ky�=0. If any of the con-
straints 1–5 listed above fail, the set of numerical values
being tested for the scaling exponents �1 ,�2 , . . . ,�8 is
deemed a failure and cannot represent a solution. These con-
straints are physically reasonable, provided the damped
eigenmode is excited to finite amplitude and does not simply
decay as usually assumed. These six conditions can be in-
ferred from numerical solutions and taken as empirical; how-

18
ever, they can also be deduced from analysis.
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Of the 729 scalings satisfying Eqs. �27� and �29�, only
one satisfies all five conditions above. This scaling is �1=1,
�2=2, �3=1, �4=2, �5=1, �6=2, �7=2, and �8=0. In the
equation for ���1�2�ky=0, this scaling eliminates all but one
nonlinear term from the lowest order. This term drives the
nonlinear excitation of the zonal flow ���1�2�ky=0. However,
as Eq. �15� stands, there is no linear term to balance this
zonal flow drive because ��1�ky=0	0. Even though zonal
modes on the damped branch saturate the unstable ky �0
modes, the zonal flow ���1�2�ky=0 does not reach a steady
state when the system is close to the instability threshold
with �e�
� /vDky. �Previous work showed that when
�e�1 nonlinear transfer into and out of the zonal flow by
independent nonlinear terms was in balance, yielding a
steady state that required no damping of the zonal flow.23�
However, when the system is close to threshold, steady state
requires additional damping on ���1�2�ky=0 not included in
Eqs. �3� and �4�. This damping goes as �3 and is smaller than
the damping rate of the damped branch.

The assumption of proximity to threshold, ��1, raises
the order of the lowest-order balance and considerably sim-
plifies Eqs. �15� and �16�. An algebraic solution is now ob-
tainable, given by

S11T��1 =
4
1/2�2�

�k̄yk̄x�2k̄2
, �30�

Im S12T��4 =
4
�2�2

�k̄yk̄x�2k̄2�1 − 
1/2�
, �31�

Re S12T��3 =
4
�1 − 
1/2 + 2
 − 
3/2��2�

�k̄yk̄x�2k̄2�1 − 
1/2�2�1 − 
1/2�2 −
1

2Cz
� ,

�32�

S22T��2 =
8
�1 − 
1/2 + 2
 − 
3/2��2�2

�k̄yk̄x�2k̄2�1 − 
1/2�2�1 − 
1/2�2 −
1

2Cz
� , �33�

S11Z��5 =
4
1/2�1 − 
1/2 + 2
 − 
3/2��2�

Cz�k̄yk̄x�2k̄2�1 − 
1/2�2 −
1

2Cz
� , �34�

Re S12Z��7 = −
4
�1 − 
1/2 + 2
 − 
3/2��2�2

�k̄yk̄x�2k̄2�1 − 
1/2�2�1 − 
1/2�2 −
1

2Cz
� ,

�35�

Im S12Z��8 = −
16�1 − 
1/2 + 2
 − 
3/2�

�k̄yk̄x�2�1 − 
1/2��1 − 
1/2�2 −
1 � , �36�
2Cz
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S22Z��6 =
4
�1 − 
1/2 + 2
 − 
3/2��2�2

�k̄yk̄x�2k̄2�1 − 
1/2�3�1 − 
1/2�2 −
1

2Cz
� , �37�

where Cz�
1
2 �1−
1/2�−2 is the order-unity coefficient of the

additional damping of ���1�2�ky=0, k̄2 is a spectrum average of
the quantity �k2− �k−k��2� �with averages over both k and

k��, and k̄x and k̄y are typical wave numbers in the x and y

directions. The average that yields k̄y does not include
ky =0. Moreover, by virtue of the saturation constraints enu-
merated above, the wave-number average is restricted to the
subrange over which the growth remains strong. The addi-
tional damping is given by �=Cz��. The scalings evident in
Eqs. �30�–�37�, and in particular the gradient dependencies,
are different from those previously given.23 Previous work
did not resolve the dependence on �e. In the expressions for
��1�2, ��2�2, Re��1�2

*�, and Im��1�2
*� there were no factors ��j

because the functions S11T, S22T, Re S11T, Im S12T, S11Z, S22Z,
Re S11Z, and Im S12Z were order-unity functions with un-
specified dependence on �e and 
. Note that the order-unity

factor �2 / k̄2 that appears in all but one of Eqs. �30�–�37�
significantly modifies the initial scaling factors of ky

2vD
2 , k̄y

2vD
2 ,

�2, �kyvD, and �k̄yvD in Eqs. �19�–�26�. This is because
��1 raises the order of many terms and changes the domi-
nant spectrum balances. Consequently, it must be remem-
bered that the gradient dependencies of Eqs. �30�–�32� and
�34�–�37�, and therefore the gradient dependencies of inward
and outward components of the particle flux, apply to the
near-threshold regime assumed, and, in particular, for the
ordering ��
��
k�1. A different ordering will likely
yield different dependencies.

IV. PARTICLE FLUX

The particle flux is evaluated for the near-threshold satu-
rated turbulent state given by Eqs. �30�–�37� by substituting
into Eq. �9�. Only the spectra for nonzonal wave numbers
contribute to the flux. However, because the spectral transfer
to zonal wave numbers is so large, the zonal wave numbers
are central to the nonzonal spectra entering the sum. Carry-
ing out the indicated operations,

� �
4
1/2�3�

�1 − 
1/2�vD�k̄xk̄y�2k̄2� �2 − 
1/2��
�1 − 
1/2�

−
�1 + 2���1 − 
1/2 + 2
 − 
3/2�

�1 − 
1/2�2 −
1

2CZ
� � . �38�

The first term is outward. It includes the quasilinear flux
from ��1�2 and the nonquasilinear contribution from
Im��1

*�2�. The second term is inward and is comprised of the
nonquasilinear contributions from Re��1

*�2� and ��2�2. Sev-
eral features of this expression are noteworthy. Foremost,
inward flux contributions, which arise exclusively from non-
quasilinear effects, are significant. The contribution from

2
��2� , which is a negative-definite component inexorably tied
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to nonlinear damped eigenmode excitation, is similar in mag-
nitude to the quasilinear flux. The inward component from
Re��1

*�2� is even larger. While the spectrum Re��1
*�2� is

smaller than its quasilinear counterpart ��1�2 by a factor
�2
1/2, the coefficients of these spectra in the flux expression
have a ratio Im R2 / Im R1, which goes as ��2
1/2��−1. Conse-
quently the Re��1

*�2� term is larger than the quasilinear flux.
This term does not have a definite sign, and as argued below,
is probably diminished by presently unresolved wave-
number contributions near ky =0 of opposite sign. The same
effect applies to the outward component from Im��1

*�2�, and
means that the negative sign of the three nonquasilinear com-
ponents in Eq. �38� can be expected to persist even when
saturation is fully resolved in wave number. The net negative
sign of the three nonlinear terms was observed in
simulations,17 although the system was well above threshold
and therefore in a different regime.

A second important feature of Eq. �38� is the presence of
two distinct gradient scalings. The quasilinear term and the
terms proportional to ��2� and Im��1

*�2� scale as Ln
3 /LT

2,
whereas the larger term proportional to Re��1

*�2� scales as
Ln

2 /LT. Thus, the role of the damped eigenmode is not simply
the introduction of a component that reduces the quasilinear
flux but otherwise leaves its scaling unchanged. On the con-
trary, the nonlinear flux components must be viewed as in-
dependent because of distinct scalings. The third feature of
interest is that no scaling of Eq. �38� is compatible with a
flux that can be modeled as the sum of diffusive and convec-
tive components. The saturation of the instability is such that
every term of the flux, including the quasilinear term, is
highly nondiffusive. The transport is stronger for flat density
gradients. It should be remembered that the gradient scaling,
while interesting, is sensitive to the ordering assumption that
defines the threshold regime studied here. In different re-
gimes the scaling is expected to change. For example, when
k2 becomes order unity, the threshold factor in the ��1�2 term
of Eq. �9� now has leading order components that do not
depend on �e.

For the present ordering with �1, the inward compo-
nent from Re��1

*�2� has the largest magnitude because it
goes as � while the remaining terms go as �2. This flux ap-
proximation therefore can assume negative values, violating
the positivity constraint of Eq. �12�. As noted, the constraint
is global, whereas the flux computed in Eq. �38� is taken
from spectrum balances that apply locally to restricted wave-
number subranges. If the balances could be solved for arbi-
trary wave number �a daunting task given the convolutions�,
the resulting spectral densities for ��1�2, ��2�2, Re��1

*�2�, and
Im��1

*�2� would yield a flux that satisfies the positivity con-
straint. However, the solutions given in Eqs. �30�–�32� and
�34�–�37� are restricted to a limited subrange of wave num-
bers, over which the instability drive remains fairly constant.
The failure of Eq. �38� to reflect the positivity constraint
should not be taken as indication that the conclusions of the
previous paragraphs regarding the inward flux components
are not valid. The inward components are a robust and sig-
nificant feature of simulations, which nevertheless also show

that ��0 when dW /dt�0. One possible source for the dis-
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crepancy between Eqs. �38� and �12� is the wave-number
variation of Re��1

*�2� inferred from Eqs. �32� and �35�.
According to these expressions Re��1

*�2� changes sign as
ky→0. This behavior is also robust: the negative sign of
�Re��1

*�2��ky=0 follows directly from the identity of Eq. �27�.
A positive value away from ky =0 was found in simulations,
but is also obtained from the spectrum balances, both in the
threshold calculation described here, and for �e of order
unity.17 We expect the spectra to vary smoothly so that
Re��1

*�2� first decreases as ky approaches zero, and then
passes through zero for ky finite before reaching the negative
value given by Eq. �35�. This would make Re��1

*�2� smaller
in a spectrum sum than its value taken from a pointwise
balance near its maximum. The latter typifies Eq. �38�, while
a spectrum sum picking up negative values slightly above
ky =0 enters the exact flux.

V. CONCLUSIONS

This paper demonstrates that there is an inward particle
flux component associated with the nonlinear excitation of a
damped eigenmode to finite-amplitude levels. The resulting
nonlinear mixing of unstable and damped eigenmodes cannot
be predicted within the quasilinear approximation. Hence the
inward flux component arising from the damped eigenmode
is a nonlinear effect beyond quasilinear theory. The damped
eigenmode affects the particle transport by changing the
cross phase between the density and the potential from the
value stipulated according to the quasilinear prescription by
the unstable eigenmode. The excitation of a damped eigen-
mode answers the question: when does the quasilinear ap-
proximation for the transport correlation break down? It does
so in a way that is more descriptive than merely saying that
the eigenmode becomes nonlinear or that the cross phase is
no longer given by the quasilinear value. Moreover tracking
the nonlinear evolution of all the eigenmodes in a complete
basis constitutes a systematic method for calculating the full
nonlinear particle flux.

A simple fluid model for trapped electron mode turbu-
lence provides a concrete application of this approach, allow-
ing analytic calculation of inward particle flux components
beyond quasilinear theory. The calculation requires the solu-
tion of spectrum evolution equations for eigenmode autocor-
relations and cross correlations. This is undertaken using a
joint asymptotic expansion in ratio of collision frequency to
diamagnetic frequency, wave number, and �e

2, where �e is
the ratio of density to temperature gradient scale lengths. In
this regime the system is near the instability threshold, i.e., it
is weakly driven. There are inward flux components of sig-
nificant magnitude arising from both the autocorrelations and
cross correlations of the eigenmodes. All flux components
are nondiffusive. The quasilinear flux component, and com-
ponents proportional to the autocorrelation of the damped
eigenmode and imaginary part of the cross correlation scale
as Ln

3 /LT
2. The real part to the cross correlation scales as

Ln
2 /LT. These scalings are not universal but depend on the

ordering of the small parameters in the asymptotic expan-
sion. These parameters delineate wavelength, collisionality,

and instability threshold regimes.
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The primary significance of the present calculation is its
identification and description of new physics affecting par-
ticle transport, and in particular, inward transport. The details
of the calculation, e.g., the gradient scalings, are of second-
ary significance. It is important to show that they can be
derived, and that scalings associated with damped eigen-
mode excitation can differ from those of the quasilinear flux.
However, the details are sensitive to parameter regimes.
Only one of several possible regimes has been examined and
we have not attempted to match parameters to experimental
conditions. Indeed, the model is simple, designed to capture
key linear and nonlinear effects and allow careful examina-
tion of complex nonlinear physics, to the exclusion of other
details. As mentioned, we have not considered weakly colli-
sional trapped electron dynamics in conjunction with ion in-
stability such as ITG. It is well known that electron dynamics
which of themselves produce only outward transport in un-
stable situations, drive inward transport when they are a sta-
bilizing component of an instability supported primarily by
ion dynamics.2,3 This means that the type of physics de-
scribed herein should be examined as a nonadiabatic compo-
nent of ITG turbulence, to determine if the inward mixing-
mode flux becomes larger than the quasilinear value. It
should also be observed that while the present calculation
involves a thermal force, the effect of damped eigenmode
excitation is more general, and where relevant, can be ex-
pected to modify curvature-driven pinches as well.

The prevalence of damped eigenmode excitation, upon
which these inward transport effects are predicated, is an
open question. Damped eigenmode excitation has been ob-
served in the present model, in Rayleigh-Taylor turbulence,19

and in a model for ion drift wave turbulence,18 with signifi-
cant effects on transport evident in all three cases. On the
other hand, a numerical study of trapped electron turbulence
using a gyrokinetic model shows little deviation from the
linear state.26 While general criteria have been formulated for
the excitation of stable eigenmodes and for their role as sig-
nificant participants in transport,18 such criteria must be
checked on a case by case basis. Moreover, they are rooted in
eigenmode space, for which, as yet, there is limited experi-
ence and intuition. This makes it difficult to predict a priori
which types of turbulence might be more susceptible to
damped eigenmode excitation. We note that geodesic acous-
tic modes and zonal flows appear as fluctuations that are
distinct from the unstable eigenmode in models where nona-
diabatic electrons are not intrinsic to the instability. The
present calculation demonstrates that it is a misconception to
view these types of fluctuations as examples of damped
eigenmode excitation. Geodesic acoustic modes and zonal
flows make no direct contribution to the flux because they
have ky =0, whereas the damped eigenmode described herein
produces large inward flux components because it has a full
spectrum of fluctuations with ky �0. Nonetheless, zonal

modes are the primary attractor of spectrally transferred en-
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ergy. The nonzonal, damped eigenmodes provide part of the
conveyance and, to some extent, simply share in the wealth
of the transfer anisotropy. All of this is accounted for in the
solution of the spectrum evolution equations.

The trapped electron model describes damped-
eigenmode effects in which the cross phase between the un-
stable and stable eigenmodes tends to a stationary value.17

This makes the particle flux behavior simpler than what it is
for cases in which cross phases lock only transiently.18 There
the flux is intrinsically nonstationary and intermittent, even if
the gradients are held fixed. As with the present case, the
origin of the effect lies in the excitation of stable eigen-
modes. It is important that future study of particle transport
look not just at the nonquasilinear and nondiffusive effects
studied herein, but at nonstationary effects, both those tied to
evolving profiles, and to damped eigenmode excitation.
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